Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Poisot, Timothée (Ed.)Global change is complex and multidimensional, making it challenging to understand how human activities affect ecosystem processes. A critical gap in this understanding is how drivers of global change broadly affect food webs. While an industry of studies documents shifts in food webs in response to anthropogenic pressures, a general synthesis is lacking. To address this, we review studies across diverse ecosystems that use stable isotope analysis, energetic food web modelling and gut content analysis to reveal the prevalence of asymmetric rewiring—a phenomenon whereby anthropogenic pressures differentially impact habitats across space, altering some energy pathways within food webs relative to others. We then highlight several examples from the literature to illustrate how this process unfolds. To explore its broader consequences, we use a simple food web model to demonstrate how asymmetric rewiring alters resilience and key ecosystem functions, such as primary and secondary production. Our synthesis uncovers a remarkably general response in food web structure to global change that needs to be better understood to protect nature and the services that human societies rely on in a rapidly changing world.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Abstract Peatlands are the most efficient natural ecosystems for long‐term storage of atmospheric carbon. Our understanding of peatland carbon cycling is based entirely on bottom‐up controls regulated by low nutrient availability. Recent studies have shown that top‐down controls through predator‐prey dynamics can influence ecosystem function, yet this has not been evaluated in peatlands to date. Here, we used a combination of nutrient enrichment and trophic‐level manipulation to test the hypothesis that interactions between nutrient availability (bottom‐up) and predation (top‐down) influence peatland carbon fluxes. Elevated nutrients stimulated bacterial biomass and organic matter decomposition. In the absence of top‐down regulation, carbon dioxide (CO2) respiration driven by greater decomposition was offset by elevated algal productivity. Herbivores accelerated CO2emissions by removing algal biomass, while predators indirectly reduced CO2emissions by muting herbivory in a trophic cascade. This study demonstrates that trophic interactions can mitigate CO2emissions associated with elevated nutrient levels in northern peatlands.more » « less
-
Abstract Nutrient enrichment can simultaneously increase and destabilise plant biomass production, with co‐limitation by multiple nutrients potentially intensifying these effects. Here, we test how factorial additions of nitrogen (N), phosphorus (P) and potassium with essential nutrients (K+) affect the stability (mean/standard deviation) of aboveground biomass in 34 grasslands over 7 years. Destabilisation with fertilisation was prevalent but was driven by single nutrients, not synergistic nutrient interactions. On average, N‐based treatments increased mean biomass production by 21–51% but increased its standard deviation by 40–68% and so consistently reduced stability. Adding P increased interannual variability and reduced stability without altering mean biomass, while K+ had no general effects. Declines in stability were largest in the most nutrient‐limited grasslands, or where nutrients reduced species richness or intensified species synchrony. We show that nutrients can differentially impact the stability of biomass production, with N and P in particular disproportionately increasing its interannual variability.more » « less
An official website of the United States government
